Area 11 Of Prefrontal Cortex

Group analysis found that various brain areas of patients with congenital scoliosis showed glucose hypometabolisms in the left prefrontal cortex (Brodmann area 10), right orbitofrontal cortex (Brodmann area 11), left dorsolateral prefrontal cortex (Brodmann area 9), left anterior cingulate gyrus (Brodmann area 24) and pulvinar of the left thalamus.  

In family-positive but not family-negative subjects, striatal D(2) receptors were associated with metabolism in anterior cingulate (Brodmann area 24/25) and orbitofrontal (Brodmann area 11) and prefrontal (Brodmann area 9/10) cortices, and with personality scores of positive emotionality.  

We compared GS with GFAP immunoautoradiography in dorsolateral (area 9) and orbitofrontal (area 11/47) cortex. Optical density measures from film autoradiographs revealed an increase in GFAP immunoreactivity in area 9 in schizophrenia and a decrease in area 11/47 in both schizophrenia and bipolar disorder. The increase in GFAP in area 9 significantly correlated with lifetime antipsychotic drug treatment, whereas the reduction in area 11/47 occurred despite this effect.  

We utilised postmortem brain tissue to quantify sections of left and right orbitofrontal cortex (area 11) from nine schizophrenic and eight control patients from the Charing Cross Prospective Schizophrenia Study immunostained for the presence of the kainate receptor (GluR5/6/7).  

Bilateral Brodmann area 11 perfusion of the freezing of gait group decreased significantly compared to that of the no freezing of gait group. The Brodmann area 11 may play important roles in gait, and impairment in this region may have a close relationship with freezing of gait in Parkinson's disease..  

Increased apoD levels were observed in the lateral prefrontal cortex (Brodmann Area 46) in both schizophrenia (46%) and bipolar disorder (111%), and in the orbitofrontal cortex (Brodmann area 11) (44.3 and 37.9% for schizophrenia and bipolar disorder, respectively).  

RESULTS: Amphetamine increased rCBF in two mesial prefrontal zones (Brodmann's areas 8 and 10), inferior orbital frontal lobe (area 11), brain stem (ventral tegmentum), anteromesial temporal lobe (amygdala), and anterior thalamus.  

The results indicated that the rostral orbitofrontal region (area 11), which is primarily linked with the anterior medial temporal limbic region and lateral prefrontal cortical areas, is involved in the process of encoding of new information..  

The cellular levels of expression of the two mGluR signals investigated (mGluR3, and 5) were not significantly changed relative to controls except for an increase in the neuronal mGluR5 in the pyramidal cell layers of area 11.  

Dramatic decreases of dopamine receptor transcripts were found in the prefrontal cortex, but these changes were restricted to the D3 and D4 receptors, and localized to Brodmann area 11 (orbitofrontal cortex).  

The least architectonically differentiated areas (orbital area 11 and medial area 32) had more widespread corticocortical connections, including strong links with limbic cortices.(ABSTRACT TRUNCATED AT 400 WORDS).  

Analysis of the thalamus in cases with fluorescent dye injections into the lateral orbital gyrus (Walker's area 11), principal sulcus (area 46), anterior bank of the arcuate gyrus (areas 8 and 45), supplementary motor area (area 6), and motor cortex (area 4) revealed topographic organization of the nigrothalamocortical projection system.  

Horseradish peroxidase (HRP) histochemistry and double labeling with the fluorescent dyes nuclear yellow (NY) and fast blue (FB) were used to examine and compare the laminar and tangential arrangement of ipsilateral (associational) and contralateral (callosal) neurons and their relative density in three regions of prefrontal granular cortex: Walker's area 46 (principal sulcus), area 8A (superior limb of the arcuate sulcus), and area 11 (lateral orbital sulcus).  

Retrogradely labeled neurons were found at the cortical level within the dorsomedial and lateral prefrontal cortex (areas 9 and 10), orbital cortex (area 11), premotor cortex (areas 44, 6b, and 8), frontoparietal operculum, insula, cortex of the superior temporal sulcus, piriform cortex, subiculum, posterior cingulate, and retrosplenial cortex.  

Area 23, likewise, sends its connections to the dorsal prefrontal cortex (areas 9 and 10), the rostral orbital cortex (area 11), the parieto-temporal cortex (posterior part of the inferior parietal lobule and the superior temporal sulcus), the parahippocampal gyrus (areas TH and TF), the retrosplenial region and the presubiculum.  

[ View All ]